2021考研数学:公式总结之常用诱导公式篇
2021考研数学:公式总结之常用诱导公式篇
对于2021考研数学备考的学生来说,公式部分的内容我们要着重掌握,因为大多数题型都会涉及到。为此,考研小编整理了“2021考研数学:公式总结之常用诱导公式篇”的相关内容,希望对大家有所帮助。
一、常用诱导公式
公式一:
设&alpha为任意角,终边相同的角的同一三角函数的值相等:
sin(2k&pi+&alpha)=sin&alpha(k&isinZ)
cos(2k&pi+&alpha)=cos&alpha(k&isinZ)
tan(2k&pi+&alpha)=tan&alpha(k&isinZ)
cot(2k&pi+&alpha)=cot&alpha(k&isinZ)
公式二:
设&alpha为任意角,&pi+&alpha的三角函数值与&alpha的三角函数值之间的关系:
sin(&pi+&alpha)=-sin&alpha
cos(&pi+&alpha)=-cos&alpha
tan(&pi+&alpha)=tan&alpha
cot(&pi+&alpha)=cot&alpha
公式三:
任意角&alpha与-&alpha的三角函数值之间的关系:
sin(-&alpha)=-sin&alpha
cos(-&alpha)=cos&alpha
tan(-&alpha)=-tan&alpha
cot(-&alpha)=-cot&alpha
公式四:
利用公式二和公式三可以得到&pi-&alpha与&alpha的三角函数值之间的关系:
sin(&pi-&alpha)=sin&alpha
cos(&pi-&alpha)=-cos&alpha
tan(&pi-&alpha)=-tan&alpha
cot(&pi-&alpha)=-cot&alpha
公式五:
利用公式一和公式三可以得到2&pi-&alpha与&alpha的三角函数值之间的关系:
sin(2&pi-&alpha)=-sin&alpha
cos(2&pi-&alpha)=cos&alpha
tan(2&pi-&alpha)=-tan&alpha
cot(2&pi-&alpha)=-cot&alpha
公式六:
&pi/2±&alpha及3&pi/2±&alpha与&alpha的三角函数值之间的关系:
sin(&pi/2+&alpha)=cos&alpha
cos(&pi/2+&alpha)=-sin&alpha
tan(&pi/2+&alpha)=-cot&alpha
cot(&pi/2+&alpha)=-tan&alpha
sin(&pi/2-&alpha)=cos&alpha
cos(&pi/2-&alpha)=sin&alpha
tan(&pi/2-&alpha)=cot&alpha
cot(&pi/2-&alpha)=tan&alpha
sin(3&pi/2+&alpha)=-cos&alpha
cos(3&pi/2+&alpha)=sin&alpha
tan(3&pi/2+&alpha)=-cot&alpha
cot(3&pi/2+&alpha)=-tan&alpha
sin(3&pi/2-&alpha)=-cos&alpha
cos(3&pi/2-&alpha)=-sin&alpha
tan(3&pi/2-&alpha)=cot&alpha
cot(3&pi/2-&alpha)=tan&alpha
(以上k&isinZ)
注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀:
上面这些诱导公式可以概括为:
对于&pi/2k±&alpha(k&isinZ)的三角函数值,
①当k是偶数时,得到&alpha的同名函数值,即函数名不改变
②当k是奇数时,得到&alpha相应的余函数值,即sin&rarrcoscos&rarrsintan&rarrcot,cot&rarrtan.
(奇变偶不变)
然后在前面加上把&alpha看成锐角时原函数值的符号。
(符号看象限)
例如:
sin(2&pi-&alpha)=sin(4·&pi/2-&alpha),k=4为偶数,所以取sin&alpha。
当&alpha是锐角时,2&pi-&alpha&isin(270°,360°),sin(2&pi-&alpha)<0,符号为“-”。
所以sin(2&pi-&alpha)=-sin&alpha
上述的记忆口诀是:
奇变偶不变,符号看象限。
公式右边的符号为把&alpha视为锐角时,角k·360°+&alpha(k&isinZ),-&alpha、180°±&alpha,360°-&alpha
所在象限的原三角函数值的符号可记忆
水平诱导名不变符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正二正弦(余割)三两切四余弦(正割)”.
这十二字口诀的意思就是说:
第一象限内任何一个角的四种三角函数值都是“+”
第二象限内只有正弦是“+”,其余全部是“-”
第三象限内切函数是“+”,弦函数是“-”
第四象限内只有余弦是“+”,其余全部是“-”.
上述记忆口诀,一全正,二正弦,三内切,四余弦
还有一种按照函数类型分象限定正负:
函数类型第一象限第二象限第三象限第四象限
正弦………..+…………+…………&mdash…………&mdash……..
余弦………..+…………&mdash…………&mdash…………+……..
正切………..+…………&mdash…………+…………&mdash……..
余切………..+…………&mdash…………+…………&mdash……..
以上是考研为考生整理的“2021考研数学:公式总结之常用诱导公式篇”的相关内容,希望对大家有帮助,更多数学复习知识尽在考研数学复习指导频道!
.xqy_container .xqy_core .xqy_core_main .xqy_core_text{height:auto !important;}
2021考研数学:公式总结之常用诱导公式篇