天津商业大学714高等数学考研真题和答案

天津商业大学714高等数学考研真题和答案

  名校考研真题

  第1章 多项式

  一、判断题

  1.设Q是有理数域,则P=也是数域,其中

  .(  )[南京大学研]

  【答案】对查看答案

  【解析】首先0,1∈P,故P非空;其次令a=α1+β1i,b=α2+β2i其中α1,α2,β1,β2为有理数,故

  a±b=(α1+β1i)±(α2+β2i)=(α1±α2)+(β1±β2)i∈P

  ab=(α1+β1i)(α2+β2i)=(α1α2-β1β2)+(α1β2+α2β1)i∈P

  又令c=α3+β3i,d=α4+β4i,其中α3,α4,β3,β4为有理数且d≠0,即α4≠0,β4≠0,有

  综上所述的P为数域.

  2.设f(x)是数域P上的多项式,a∈P,如果a是f(x)的三阶导数f‴(x)的k重根(k≥1)并且f(a)=0,则a是f(x)的k+3重根.(  )[南京大学研]

  【答案】错查看答案

  【解析】反例是f(x)=(x-a)k+3+(x-a)2,这里f(a)=0,并且f‴(x)=(k+3)(k+2)(k+1)(x-a)k满足a是f(x)的三阶导数f‴(x)的k重根(k≥1).

  3.设f(x)=x4+4x-3,则f(x)在有理数域上不可约.(  )[南京大学研]

  【答案】对查看答案

  【解析】令x=y+1,则f(y)=y4+4y3+6y2+8y+2,故由艾森斯坦因判别法知,它在有理数域上不可约.

  二、计算题

  1.f(x)=x3+6×2+3px+8,试确定p的值,使f(x)有重根,并求其根.[清华大学研]

  解:f′(x)=3(x2+4x+p).且(f(x),f′(x))≠1,则

  (1)当p=4时,有(f(x),f′(x))=x2+4x+4

  所以x+2是f(x)的三重因式,即f(x)(x+2)3,这时f(x)的三个根为-2,-2,-2.

  (2)若p≠4,则继续辗转相除,即

  当p=-5时,有(f(x),f′(x))=x-1

  即x-1是f(x)的二重因式,再用(x-1)2除f(x)得商式x+8.故

  f(x)=x3+bx2-15x+8=(x-1)2(x+8)

  这时f(x)的三个根为1,1,-8.

  2.假设f1(x)与f2(x)为次数不超过3的首项系数为1的互异多项式,且x4+x2+1整除f1(x3)+x4f2(x3),试求f1(x)与f2(x)的最大公因式.[上海交通大学研]

  解:设6次单位根分别为

  由于x6-1=(x2)3-1=(x2-1)(x4+x2+1),所以ε1,ε2,ε4,ε5是x4+x2+1的4个根.

  由于ε13=ε53=-1,且x4+x2+1∣f1(x3)+x4f2(x3),所以,分别将ε1,ε5代入f1(x3)+x4f2(x3)可得

  从而f1(-1)=f2(-1)=0

  即x+1是f1(x)与f2(x)的一个公因式.

  同理,将ε2,ε4代入f1(x3)+x4f2(x3)可得f1(1)=f2(1)=0,即x-1是f1(x)与f2(x)的一个公因式.

  所以(x-1)(x+1)是f1(x)与f2(x)的一个公因式.

  又因为f1(x),f2(x)为次数不超过3的首项系数为1的互异多项式,所以(f(x),g(x))=x2-1

  三、证明题

  1.设不可约的有理分数p/q是整系数多项式f(x)=a0xn+a1xn-1+…+an-1x+an的根,证明:q∣a0,p∣an[华中科技大学研]

  证明:因为p/q是f(x)的根,所以(x-p/q)∣f(x),从而(qx-p)∣f(x).又因为p,q互素,所以qx-p是本原多项式[即多项式的系数没有异于±l的公因子],且

  f(x)=(qx-p)(bn-1xn-1+…+b0,bi∈z

  比较两边系数,得a0=qbn-1,an=-pb0⇒q∣a0,p∣an

  2.设f(x)和g(x)是数域P上两个一元多项式,k为给定的正整数.求证:f(x)∣g(x)的充要条件是fk(x)∣gk(x)[浙江大学研]

  证明:(1)先证必要性.设f(x)∣g(x),则g(x)=f(x)h(x),其中h(x)∈P(x),两边k次方得gk(x)=fk(x)hk(x),所以fk(x)∣gk(x)

  (2)再证充分性.设fk(x)∣gk(x)

  (i)若f(x)=g(x)=0,则f(x)∣g(x)

  (ii)若f(x),g(x)不全为0,则令d(x)=(f(x),g(x)),那么

  f(x)=d(x)f1(x),g(x)=d(x)g1(x),且(f1(x),g1(x))=1①

  所以fk(x)=dk(x)f1k(x),gk(x)=dk(x)g1k(x)

  因为fk(x)∣gk(x),所以存在h(x)∈P[x](x),使得gk(x)=fk(x)·h(x)

  所以dk(x)g1k(x)=dk(x)f1k(x)·h(x),两边消去dk(x),得g1k(x)=f1k(x)·h(x)②

  由②得f1(x)∣g1k(x),但(f1(x),g1(x))=1,所以f1(x)∣g1k-1(x)

  这样继续下去,有f1(x)∣g1(x),但(f1(x),g1(x))=1

  ……

  完整资料来源:弘博学习网

天津商业大学714高等数学考研真题和答案

想获得更多考研相关资料

京ICP备14027590号