北理工考研,北理工考研分数线2022
近日,北京理工大学化学与化工学院王振华教授和孙克宁教授团队在构建高性能锂硫电池方面取得重要进展,相关研究成果发表于国际顶级期刊Advanced Materials (影响因子30.849),题目为《Catalytic Mechanism of Oxygen Vacancies in Perovskite Oxides for Lithium-Sulfur Batteries》。化学与化工学院博士研究生侯文烁为论文第一作者,王振华教授,孙克宁教授以及悉尼科技大学的汪国秀教授为通讯作者。
论文链接:
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202202222
锂硫(Li-S)电池具有较高的理论比能量(2600 Wh kg-1),被认为是新一代二次电池的发展方向。但目前还存在一些问题限制了锂硫电池的技术发展,如活性物质硫和放电产物硫化锂的绝缘性;充放电过程中产生可溶性中间产物多硫化锂(LiPSs)造成的穿梭效应;LiPSs转化反应动力学缓慢导致的活性物质利用率低,电池容量迅速下降等问题。为了解决上述问题,需要从根本上抑制LiPSs的穿梭效应,提高LiPSs的转化反应动力学。2020年,该团队提出原位析出法制备了钙钛矿与纳米金属的异质结构(STO@Co),通过吸附-催化协同作用有效抑制了多硫穿梭效应并促进了LiPSs的转化,相关成果发表在顶级期刊Chem. Eng. J. (2020, 409:128079)。
在国家自然科学基金委的支持下,北京理工大学化学与化工学院王振华教授和孙克宁教授团队在前期的研究基础上,基于缺陷化学理论,选择具有吸附性能和电化学稳定性的钛酸锶基钙钛矿氧化物作为基底材料,对钛酸锶基钙钛矿氧化物Sr0.9Ti1-xMnxO3-δ (STMnx) (x=”0.1-0.3)进行了氧空位浓度的调控,改善其吸附-催化性能,实现了高性能锂硫电池。以具有较高氧空位浓度的STMn0.3作为正极载体的锂硫电池,在2C下进行1500次循环后仍可提供780 mAh g-1的高初始比容量和0.032%的低衰减率。这种氧空位的定量调控策略对缺陷材料的设计与调控具有启发意义,可在锂硫电池及相关储能与转换系统领域推广应用。
钙钛矿氧化物STO3与STMnx (x=”0.1-0.3)的电池性能图
上述研究工作得到了国家自然科学基金项目以及化学电源与绿色催化北京市重点实验室的支持。
本文来自“北京理工大学”。
北理工考研(北理工考研分数线2022)